
XFT: Unlocking the Power of Code Instruction Tuning
by Simply Merging Upcycled Mixture-of-Experts

Yifeng Ding, Jiawei Liu, Yuxiang Wei, Lingming Zhang
University of Illinois Urbana-Champaign
{yifeng6, lingming}@illinois.edu

Abstract
We introduce XFT, a simple yet powerful
training scheme, by simply merging upcycled
Mixture-of-Experts (MoE) to unleash the per-
formance limit of instruction-tuned code Large
Language Models (LLMs). While vanilla
sparse upcycling fails to improve instruction
tuning, XFT introduces a shared expert mecha-
nism with a novel routing weight normalization
strategy into sparse upcycling, which signif-
icantly boosts instruction tuning. After fine-
tuning the upcycled MoE model, XFT intro-
duces a learnable model merging mechanism
to compile the upcycled MoE back to a dense
model, achieving upcycled MoE-level perfor-
mance with only dense-model compute. By
applying XFT to a 1.3B model, we create a
new state-of-the-art small LLM (<3B) for code
with 67.1 and 64.6 pass@1 on HumanEval and
HumanEval+ respectively. Furthermore, with
the same data and model architecture, XFT im-
proves supervised fine-tuning (SFT) by 13% on
HumanEval+, along with consistent improve-
ments from 2% to 13% on MBPP+, MultiPL-
E, and DS-1000, demonstrating its generaliz-
able effectiveness. XFT is fully orthogonal to
existing techniques such as Evol-Instruct and
OSS-INSTRUCT, opening a new dimension for
improving code instruction tuning.

1 Introduction

Program synthesis (or code generation) is a long-
standing problem explored since the early days of
computer science (Manna and Waldinger, 1971).
Recently, instruction tuning of code Large Lan-
guage Models (LLMs) has been used to improve
many coding tasks (Chaudhary, 2023; Luo et al.,
2023; Wei et al., 2023), such as text-to-code gener-
ation (Chen et al., 2021; Austin et al., 2021), code
completion (Cassano et al., 2022), and data science
engineering (Lai et al., 2022).

A typical instruction tuning flow involves two
steps (Zhang et al., 2023): (i) curating an instruc-
tion dataset of instruction-output pairs, where the

Dense
LLM

Dense
LLM

SFT

Dense
LLM

Sparse Upcycling

Expert Expert…

Mixture-of-Experts

Dense
LLM

Expert Expert…

Mixture-of-Experts

Dense
LLM

X FT (Ours)

Learned MergingFine-Tuning

Figure 1: Overview of SFT, sparse upcycling, and XFT.

instruction reflects human intents in natural lan-
guage and the output includes explained code snip-
pets that correspond to the intent; and (ii) super-
vised fine-tuning of pre-trained LLM on the in-
struction dataset. In the realm of code, multiple
instruction-tuning methods have been proposed
to curate high-quality instruction datasets. For
example, Code Evol-Instruct (Luo et al., 2023)
uses ChatGPT to obtain complex synthetic code
instructions with heuristic prompts, while OSS-
INSTRUCT (Wei et al., 2023) prompts ChatGPT to
generate new coding problems by drawing inspira-
tion from open source code snippets. While exist-
ing work focuses on the data perspectives of instruc-
tion tuning, they all follow the standard SFT, leav-
ing room for exploring advanced training schemes.

We argue that prior works largely overlook the
possibility of improving the code instruction tun-
ing by advancing the training schemes. Figure 1
depicts the supervised fine-tuning (SFT), which
directly starts with the pre-trained weights and ar-
chitecture for fine-tuning. The model is dense here
because all parameters are activated to compute the
next token (assuming it is a decoder-only LLM). In
contrast to fine-tuning a dense model, following the
scaling laws (Kaplan et al., 2020) (i.e., more param-
eters, better performance), sparse upcycling (Ko-
matsuzaki et al., 2023) is proposed to efficiently
upgrade the model sizes by upcycling a dense LLM
to a sparsely activated Mixture-of-Experts (MoE)
model. An MoE model is efficient because the

1

generation of the next token only involves a subset
of parameters (i.e., experts) and thus is sparsely
activated. For example, Mixtral-8x7B (Jiang et al.,
2024), compared to a dense 7B model, uses approx-
imately 8× parameters and 2× computation, i.e.,
only 2 out of 8 experts are dynamically selected to
compute the next token. However, there are two
key limitations when using sparse upcycling in in-
struction tuning: (i) Slow scaling: Komatsuzaki
et al. (2023) show that sparse upcycling improves
the dense SFT marginally at the early phase, re-
quiring orders of magnitude of extra compute to
achieve decent improvement; and (ii) Inference
cost: though MoE is more efficient than directly
scaling the size of dense LLMs, MoE is still ex-
pensive, especially at inference, as it introduces
significantly more parameters (i.e., memory) and,
more importantly, computes during inference, com-
pared to its dense counterparts.

In this paper, we propose XFT: by simply
merging upcycled MoE models, we push the per-
formance limit of instruction-tuned code LLMs.
While vanilla sparse upcycling fails to improve
instruction tuning efficiently (Komatsuzaki et al.,
2023), XFT addresses this challenge by isolating
one expert as the shared expert among all the other
experts in each MoE layer, inspired by DeepSeek-
MoE (Dai et al., 2024) and MoCLE (Gou et al.,
2024). XFT also includes a novel routing weight
normalization strategy to eliminate scale mismatch
between the upcycled MoE layer with the shared
expert and the original dense layer, which will oth-
erwise lead to performance degradation (Wu et al.,
2022). After the upcycled MoE model finishes
the SFT phase, motivated by Model Soups (Worts-
man et al., 2022), XFT uses a learnable model
merging mechanism to output a dense model by
merging all the expert networks in the upcycled
MoE, i.e., the final dense model is of the same
model structure and size as the original pre-trained
model, achieving similar performance without pay-
ing extra inference cost as the sparse upcycling.
With only 1.3B parameters, XFT achieves 67.1
pass@1 on HumanEval and 64.6 pass@1 on Hu-
manEval+, which is the new state-of-the-art for
tiny code LLMs (<3B). Compared with SFT, XFT
achieves 13% improvement on HumanEval+. Sur-
prisingly, our model merging mechanism can pre-
serve or even further boost the general performance
of the upcycled MoE with around 1/8× parameters!
We conclude our contribution as follows:

• Dimension: We open a new dimension of im-
proving instruction tuning of code LLMs by
advancing its training scheme, using enhanced
sparse upcycling and learnable model merging
mechanism, which neither changes the final
model structure nor requires more training data.

• Technique: We present XFT, a new training
scheme for code instruction tuning. XFT in-
volves two steps: upcycling and merging. A pre-
trained dense LLM is first upcycled into an MoE
with the shared expert setting and then fine-tuned
on the instruction dataset. To avoid the perfor-
mance degradation caused by the scale mismatch
issue, we propose a novel routing weight nor-
malization strategy. In addition, we introduce
the first learnable mechanism for merging the
upcycled MoE into a dense model, eliminating
additional inference overhead while preserving
or even improving the MoE performance.

• Results: With only 1.3B parameters, XFT
achieves 67.1 pass@1 on HumanEval and 64.6
pass@1 on HumanEval+, which is the new state-
of-the-art for tiny code LLMs (<3B). Compared
with normal supervised fine-tuning (SFT), XFT
achieves 13% improvement on HumanEval+!
Furthermore, XFT achieves a consistent im-
provement from 2% to 13% on MBPP, MultiPL-
E, and DS-1000 over normal SFT, demonstrating
its generalization.

2 Related Work

2.1 Mixture-of-Experts
Mixture-of-Experts (MoE) can efficiently scale up
model sizes with only sub-linear increases in com-
putation (Shazeer et al., 2017). Compared with
the standard Transformer, MoE replaces each Feed-
Forward Network (FFN) layer with an MoE layer,
which uses N (i.e., multiple) expert networks that
are structurally equivalent to the original FFN layer
and uses a router that directs each input token to
K out of N expert networks. Formally, for the l-th
MoE layer, output hidden state hl

t of the t-th input
token is computed as follows (Dai et al., 2024):

hl
t =

N∑
i=1

(gi,tFFNi(ul
t)) + ul

t

gi,t =

{
si,t si,t ∈ Topk(st,K)

0 otherwise

st = {si,t | 1 ≤ i ≤ N}

si,t = Softmaxi(ul
t
T eli)

(1)

2

where N refers to the total number of experts, gi,t
refers to the gate value for the i-th expert, FFNi(·)
refers to the i-th expert, ul

t refers to the hidden
states of the t-th token which is the input of the l-th
MoE layer, si,t refers to the affinity score between
the i-th expert and the t-th token, Topk(S,K)
refers to a function computing K largest scores
over S, and eli refers to the centroid of the i-th
expert in the l-th MoE layer. By definition, each
token will only be assigned to and computed in the
top K experts among all the N experts.

Recently, many works have been proposed to
scale model sizes with MoE architecture (Lepikhin
et al., 2020; Du et al., 2022; Fedus et al., 2022;
Jiang et al., 2024; Xue et al., 2024). While most
MoE models are trained from scratch, sparse up-
cycling (Komatsuzaki et al., 2023) is proposed to
initialize MoE models based on the pre-trained
dense model, which can efficiently reduce the com-
putational costs of training MoE models, compared
with training MoE models from scratch. Specif-
ically, sparse upcycling constructs a new MoE
model by initializing each expert of each MoE layer
as a copy of the original FFN layer in the dense
model, while directly copying the remaining layers
from the dense model to the new MoE model.

2.2 Instruction Tuning
Instruction tuning is designed to improve the
instruction-following ability of LLMs by fine-
tuning them on the instruction datasets in a su-
pervised fashion (Wei et al., 2022). The quality of
the instruction dataset is significant for the effec-
tiveness of instruction tuning and researchers have
proposed multiple methods to improve data qual-
ity. For example, SELF-INSTRUCT (Wang et al.,
2023) synthesizes high-quality instruction data by
prompting a foundation LLM with specially de-
signed prompts. To improve SELF-INSTRUCT,
Evol-Instruct (Xu et al., 2023) improves the com-
plexity and diversity of the instruction dataset by
prompting ChatGPT with heuristic prompts. OSS-
INSTRUCT (Wei et al., 2023) queries ChatGPT to
generate instruction-output pairs by getting inspira-
tion from real-world code snippets.

Recently, some parameter-efficient fine-tuning
techniques have been proposed to use MoE for
better instruction tuning. For example, Lo-
RAMoE (Dou et al., 2023) and MoCLE (Gou et al.,
2024) propose MoE-like modules that are con-
structed with Low-Rank Adaptations (LoRA) to
improve instruction tuning, while PESC (Wu et al.,

2024) proposes to integrate adapters into MoE
that are upcycled from dense models. Different
from these works, XFT focuses on full fine-tuning,
which generally performs better than parameter-
efficient fine-tuning (Chen et al., 2022).

2.3 Weight Averaging

Weight averaging is a commonly used technique
to improve the performance of deep learning mod-
els. For example, Model Soups (Wortsman et al.,
2022) averages the weights of multiple models that
are initialized from the same pre-trained model but
finetuned with different hyperparameter configura-
tions to improve the accuracy and robustness of the
model. However, only a few works have been pro-
posed to merge expert networks of an MoE layer
to a normal FFN layer using weight averaging. For
example, OneS (Xue et al., 2022) proposes several
simple weight averaging methods to merge expert
networks of a BERT-based MoE model. Closely
related to our work, Experts Weights Averaging
(EWA) (Huang et al., 2023) proposes to convert an
MoE model to a dense model with two steps: (i)
During MoE training, EWA conducts weighted av-
eraging of all the expert weights after each weight
update of MoE, which is based on a manually-
crafted hyperparameter β; (ii) After training, EWA
converts each MoE layer into an FFN layer by uni-
formly averaging the experts.

Different from all the aforementioned existing
works, XFT is the first work proposing a learnable
mechanism to merge expert networks in the upcy-
cled MoE model. Furthermore, while the training
scheme of EWA is deeply coupled to a specific
MoE architecture, XFT can be easily adapted to
different MoE architectures by only adjusting the
final merging process. In addition, unlike EWA,
XFT does not introduce any hyperparameters into
the training of the large MoE models, significantly
reducing the computational resources for hyperpa-
rameter searching. Our empirical results in Section
4 also showcase the clear advantage of XFT.

3 XFT

We describe the details of XFT in this section.
There are two steps in our framework: upcycling
(Section 3.1) and merging (Section 3.2). During up-
cycling, we construct an Mixture-of-Experts (MoE)
model from the pre-trained dense model, namely
MoEDS, which is then fine-tuned on coding instruc-
tion data. For merging, we propose a learnable

3

Layer
Norm

Attention
Layer
Norm

MLP

Layer
Norm

Attention
Layer
Norm

Layer
Norm

Attention
Layer
Norm

MLP (merged)

Original Dense Block

Upcycled MoE Block

Merged Dense Block

Router

Shared
MLP

MLP 2

MLP E

MLP 1

Normalized
Weighted

Sum

MoE

Upcycling MLP layers

Merging with learned weights

Instruction
Tuning

…
Before Training

Post Training

Figure 2: Overview of XFT.

model merging method to convert the instruction-
tuned MoEDS back to a normal dense model by
merging each MoE layer into an FFN layer through
weight averaging while directly copying other re-
maining layers. Consequently, we can obtain
XFTDS that has the same model architecture and
size as the original pre-trained dense model, which
eliminates all the additional inference overhead
brought by the original sparse upcycling, while
preserving or even improving the performance of
MoEDS. Our framework is illustrated in Figure 2.

3.1 Upcycling
Inspired by sparse upcycling (Komatsuzaki et al.,
2023), we convert the pre-trained dense LLM to a
new MoE by initializing each expert of each MoE
layer as a copy of the original FFN layer in the
dense model, while directly copying the remain-
ing layers from the dense model to the new MoE
model. However, the performance gain brought by
sparse upcycling is negligible with a very limited
extra training budget (Komatsuzaki et al., 2023) –
which is exactly the situation we are facing during
instruction tuning. Intuitively, it is because each
expert in the upcycled MoE model is trained on
fewer instruction data than the original dense model
does because traditional routers used in sparse up-
cycling will assign different tokens to different ex-
perts and thus reduce the amount of data each ex-
pert is trained on (Gou et al., 2024). Consequently,
inspired by DeepSeekMoE (Dai et al., 2024) and
MoCLE (Gou et al., 2024), XFT introduces the
shared expert setting into sparse upcycling to tackle
this challenge. We further propose a novel routing
weight normalization strategy for XFT to avoid the
potential performance degradation caused by the

scale mismatch problem (Wu et al., 2022).

3.1.1 Shared Expert for Upcycling
During upcycling, we isolate one shared expert
among all the other normal experts in each MoE
layer, where the shared expert will be deterministi-
cally assigned to handle all the tokens while other
normal experts are assigned by the router. By doing
so, the upcycled MoE model can achieve a clear
performance boost in instruction tuning, where the
shared expert can learn general knowledge across
the whole instruction dataset while other normal
experts learn specific knowledge among different
instructions assigned by the router. Formally speak-
ing, following the definition in Eq. (1), the output
hidden state hl

t of the l-th MoE layer when process-
ing the t-th token can be expressed as:

hl
t =

N∑
i=1

(gi,tFFNi(ul
t)) + ul

t

gi,t =

1− stmax i = 1

Softmaxi(si,t) · stmax si,t ∈ StK

0 otherwise

StK = Topk({si,t | 1 ≤ i ≤ N},K − 1)

stmax = max({si,t | 1 ≤ i ≤ N})

si,t =

{
−∞ i = 1

Softmaxi(ul
t
T eli) i ≥ 2

(2)

where FFN1 is chosen as the shared expert in each
MoE layer, and each token will be assigned to top
K experts including one shared expert and K − 1
other normal experts. Compared with the original
sparse upcycling, there are two major differences:

4

• Weighted Shared Expert. Following Mo-
CLE (Gou et al., 2024), with the token-to-expert
affinity score si,t, we get the maximum affinity
score stmax and use its complement 1 − stmax

as the routing weight of the shared expert.
• Routing Weight Normalization. Although

the shared expert setting is also used in recent
works (Dai et al., 2024; Gou et al., 2024), we
cannot directly follow their routing strategy be-
cause they cannot handle a scale mismatch prob-
lem that is unique for sparse upcycling. The
scale mismatch problem is that differences be-
tween the scale of the output of the upcycled
MoE layer and the original FFN layer can cause
performance degradation (Wu et al., 2022). To
handle this problem, we need to make sure the
sum of gi,t equals 1, so that the output of the
MoE layer matches that of the FFN layer in scale.
To do so, we normalize the affinity scores of top
K − 1 normal experts with Softmax and scale
their sum to stmax to make sure that the sum of
the gi,t of top K experts, including one shared
expert and K − 1 normal experts, equals 1.

3.2 Merging

We propose a learnable model merging method to
convert the large MoE model, namely MoEDS, back
to a dense model XFTDS. By doing so, we expect
XFTDS to keep the boosted performance gained
during upcycling while keeping its model size the
same as the original dense model to avoid any ad-
ditional inference overhead. Inspired by Model
Soups (Wortsman et al., 2022), we choose to merge
MoEDS by learning the mixing coefficients that
can be used to average the parameters of all experts
in each MoE layer to obtain a normal FFN layer,
while directly copying other remaining layers.

Formally speaking, given the weights of N ex-
perts at the l-th layer W l

1,W
l
2, · · · ,W l

N , the pro-
cess of merging each MoE layer to an FFN layer
can be stated as below:

W l =

N∑
i=1

αl
iW

l
i (3)

where W l denotes the merged parameter of all N
experts and αl

i denotes the learnable mixing coeffi-
cient of expert W l

i . We consider a neural network
f(x; θ) with input x and parameters θ. For loss L
and instruction dataset {(xi, yi)}mi=1, such mixing

coefficients α of all the L layers can be learned via:

argmin
α

m∑
j=1

L(f(xj ; θo, (
N∑
i=1

αl
iW

l
i)1:L), yi) (4)

where θo refers to all the remaining layers of
MoEDS other than MoE layers and α is parame-
terized as the output of a softmax, so that each αl

i

is positive and
∑N

i=1 α
l
i = 1.

While the learning process defined in Eq. (4) is
the most intuitive way of learning α, our experi-
ment in Section 5.2 shows that, due to the shared
expert setting, it tends to simply increase the mix-
ing coefficient of the shared expert at each layer as
much as possible to decrease the loss. It is not help-
ful because, although the shared expert has learned
general knowledge across the whole instruction
dataset and needs a relatively large mixing coeffi-
cient, we still need to keep the scale of the mixing
coefficient of other normal experts at a certain level
also to keep some specific knowledge learned by
other normal experts in the merged parameter W l.

To solve this issue, we introduce a shared expert
rate λ to fix the mixing coefficient of the shared
expert and learn the mixing coefficients of the re-
maining normal experts which sums to 1 − λ in
each layer. By doing so, we can easily control the
scale of the mixing coefficient of the shared expert,
while still being able to learn the optimal layer-wise
mixing coefficients of other normal experts. Let’s
say W l

1 is the shared expert of the l-th layer, then
Eq. (3) and Eq. (4) can be reformulated as below:

W l = λW l
1 +

N∑
i=2

αl
iW

l
i (5)

argmin
α

m∑
j=1

L(f(xj ; θo,W l
1:L), yi) (6)

In practice, we uniformly initialize the mix-
ing coefficients α of all the normal experts as
1−λ
N−1 , which is then trained on the same instruc-
tion dataset as upcycling.

4 Main Evaluation

4.1 Experimental Setup
Training. We use DeepSeek-Coder-Base
1.3B (Guo et al., 2024) as the main base
code LLM. evol-codealpaca-v1, an open-source
Evol-Instruct (Luo et al., 2023) dataset contain-
ing 110K samples, is used as our instruction
dataset. MoEDS, our MoE model upcycled from

5

Model Size
Instruction

Dataset
Dataset

Size
Benchmark

HumanEval (+) MBPP (+)

GPT-3.5 (May 2023) - Private - 73.2 (66.5) -

STABLE-CODE 3B - - 28.7 (25.6) 53.6 (44.1)
DeepSeek-Coder-Base 1.3B - - 28.7 (25.6) 55.6 (46.9)
Phi-2 2.7B - - 48.8 (45.1) 62.7 (52.9)
DeepSeek-Coder-Instruct 1.3B Private 2B 65.2 (59.8) 63.9 (53.1)

SFTDS 1.3B Public 0.3B 61.6 (57.3) 59.6 (49.1)
EWADS 1.3B Public 0.3B 67.1 (63.4) 58.9 (48.4)

MoEDS 8×1.3B Public 0.3B 65.2 (62.2) 60.4 (50.1)
XFTDS 1.3B Public 0.3B 67.1 (64.6) 60.4 (50.1)

Table 1: Pass@1 (%) results of different LLMs on HumanEval (+) and MBPP (+) computed with greedy decoding,
following the setting of prior works (Wei et al., 2023; Liu et al., 2023). We report the results consistently from
the EvalPlus (Liu et al., 2023) Leaderboard. Note that numbers in bold refer to the highest scores among all 1.3B
models fine-tuned on public datasets, which is the same for all the other tables.

the base model, is implemented following Llama-
MoE (LLaMA-MoE Team, 2023). It is constructed
with 8 experts in one expert layer and the top 6
experts1 are activated for each token, including one
shared expert. As such, we denote the model size of
MoEDS as 8×1.3B. Other hyperparameter settings
are detailed in Appendix A.1. We finally obtain
XFTDS by using the learned mixing coefficients to
merge MoE layers inside MoEDS as normal FFN
layers. Note that XFTDS is the final instruction-
tuned LLM we produce, while MoEDS is only an
intermediate product of XFT framework.

Baselines. To study the effectiveness of XFT,
we build a baseline model, namely SFTDS, by di-
rectly performing SFT for DeepSeek-Coder-Base
1.3B on evol-codealpaca-v1. To compare XFT
with EWA (Huang et al., 2023), we also implement
a baseline EWADS and instruction-tune it using
the same hyperparameter setting as SFTDS, which
is described in Appendix A.1. More implementa-
tion details of EWADS can be seen in Appendix
A.2. Furthermore, we incorporate multiple small
open-source models (<3B) as our baselines, includ-
ing DeepSeek-Coder-Base 1.3B, DeepSeek-Coder-
Instruct 1.3B (Guo et al., 2024), Phi-2 2.7B, and
STABLE-CODE 3B (Pinnaparaju et al.).

4.2 Python Text-to-Code Generation

HumanEval (Chen et al., 2021) and MBPP (Austin
et al., 2021) benchmarks are the two most widely-
used collections of Python code generation tasks.
We further employ HumanEval+ and MBPP+,

16 is the best-performing number of activated experts per
our HumanEval+ experiments using top {2, 4, 6} experts.

which use more tests automatically generated by
EvalPlus (Liu et al., 2023) for more rigorous evalu-
ation. We leave the details in Appendix A.3.

Table 1 shows the pass@1 results of different
LLMs. XFT achieves 67.1 pass@1 on HumanEval
and 64.6 pass@1 on HumanEval+, which makes
it the new state-of-the-art small code LLM (<3B).
We can also observe that XFTDS has a clear im-
provement over the SFTDS on both benchmarks,
with 13% and 2% improvement on HumanEval+
and MBPP+ respectively, while EWADS even per-
forms worse than SFTDS on MBPP(+). XFTDS
also outperforms EWADS on both benchmarks.
Surprisingly, XFTDS even surpasses MoEDS on
HumanEval and HumanEval+, despite only using
around 1/8× parameters and around 1/6× compu-
tations, which showcases the effectiveness of our
simple learnable merging technique.

4.3 Multilingual Code Generation

We use MultiPL-E (Cassano et al., 2022), a multi-
programming benchmark that supports 18 program-
ming languages in addition to Python, to evalu-
ate the multilingual ability and generalizability of
XFT. Among these, we choose 6 representative
programming for their distinct language features:
Java, JavaScript, C++, PHP, Swift, and Rust, fol-
lowing Wei et al. (2023). Table 2 shows, among
all 1.3B models, XFTDS achieves the best aver-
age multilingual performance and performs the
best on 5 (out of 6) individual programming lan-
guages, overall largely improving SFTDS which
uses standard SFT. Notably, the overall perfor-
mance of EWADS is on par with SFTDS, indicating

6

Model Size
Programming Language Average

C++ PHP Java JS Swift Rust

DeepSeek-Coder-Base 1.3B 28.1 22.9 27.2 28.7 10.9 18.0 22.6

SFTDS 1.3B 40.4 38.5 40.2 46.2 16.4 27.7 34.9
EWADS 1.3B 39.4 38.4 37.3 45.2 20.9 28.6 35.0

MoEDS 8×1.3B 42.2 42.2 35.4 49.8 24.7 30.6 37.5
XFTDS 1.3B 42.7 41.5 36.0 49.7 25.3 32.1 37.9

Table 2: Pass@1 results on MultiPL-E (Cassano et al., 2022) following the same hyperparameter settings as
prior works (Wei et al., 2023; Luo et al., 2023): temperature = 0.2, top_p = 0.95, max_length = 512, and
num_samples = 50. All models are evaluated using bigcode-evaluation-harness (Ben Allal et al., 2022).

Model Size
Data Science Library Overall

np pd plt py scp tf sk

DeepSeek-Coder-Base 1.3B 25.1 5.8 34.5 12.7 9.8 11.1 12.7 16.4

SFTDS 1.3B 30.9 17.0 40.5 32.7 18.3 21.1 24.4 25.9
EWADS 1.3B 32.9 19.4 41.8 25.7 17.7 22.2 33.0 27.8

MoEDS 8×1.3B 33.2 21.3 38.4 41.8 21.8 23.5 37.5 30.0
XFTDS 1.3B 32.9 20.2 38.9 41.4 21.1 16.9 37.5 29.3

Table 3: Pass@1 results on DS-1000 (completion format) with temperature = 0.2, top_p = 0.5, max_length =
1024, and num_samples = 40, following the same hyperparameter setting used in prior works (Wei et al., 2023).

that EWADS may not improve SFT on multilingual
coding. Appendix A.4 further studies whether each
expert in MoEDS specializes differently in these
programming languages.

4.4 Code Generation for Data Science

The DS-1000 dataset (Lai et al., 2022) is a collec-
tion of 1000 realistic data science coding problems
ranging from 7 popular data science libraries in
Python, including Matplotlib (plt), NumPy (np),
Pandas (pd), SciPy (scp), Scikit-Learn (sk), Py-
Torch (py), and TensorFlow (tf). We evaluate XFT
on DS-1000 to understand its effectiveness for prac-
tical data science engineering. We follow the eval-
uation setting of prior works (Guo et al., 2024;
Wei et al., 2023). In Table 3, XFTDS achieves the
best overall performance among all the evaluated
1.3B models. Specifically, XFTDS consistently sur-
passes SFTDS among all the seven studied libraries
and also outperforms EWADS in general.

5 Ablation Study

5.1 Effect of Shared Expert with Routing
Weight Normalization

We demonstrate the importance of the shared ex-
pert of XFT by comparing its performance with
the sparse upcycling (Komatsuzaki et al., 2023)
baseline that does not employ any shared expert.

Model HumanEval HumanEval+

SFTDS 61.6 57.3
MoEDS 65.2 62.2

MoEDS
- Normalization

63.4 59.1

MoEDS
- Shared Expert

61.6 56.7

Table 4: Ablation over the design of MoEDS. "- Normal-
ization" removes the routing weight normalization from
the router, making it the same design as MoCLE (Gou
et al., 2024). "- Shared Expert" removes the shared ex-
pert setting, making MoEDS the same architecture as
original sparse upcycling (Komatsuzaki et al., 2023).

This baseline has the same hyperparameter setting
and training scheme as XFT. As shown in Table
4, the performance of the original sparse upcycling
(with the "- Shared Expert" label) drops greatly
compared with MoEDS. Notably, the sparse up-
cycling model even performs worse than SFTDS
on HumanEval+, showing its ineffectiveness for
instruction tuning.

While the shared expert setting is also employed
in most recent works (Dai et al., 2024; Gou et al.,
2024), their routing strategy will cause perfor-
mance degradation due to the scale mismatch be-
tween the outputs of the upcycled MoE layer and
the original FFN layer. To understand the impor-

7

Model HumanEval HumanEval+

MoEDS 65.2 62.2
XFTDS (INIT) 66.5 64.0
XFTDS 67.1 64.6

XFTDS
- Shared Expert Rate

66.5 64.0

Table 5: Ablation over the design of XFTDS. "(INIT)"
refers to directly using the initialized mixing coefficients
to merge experts without training. "- Shared Rate" re-
moves the shared rate setting from XFTDS, which is the
same as the learned soup (Wortsman et al., 2022).

tance of routing weight normalization, we conduct
an ablation by excluding it from XFT. Table 4
shows that, after removing routing weight normal-
ization, the performance substantially decreases,
despite being still better than the original sparse up-
cycling that does not use the shared expert setting.

5.2 Effect of Merging Strategy
In this section, we demonstrate the effectiveness of
our learnable merging technique by comparing it
with (1) directly merging experts with initialized
mixing coefficients, and (2) the learnable merging
technique without the shared rate setting, which
is the same setting as the learned soup in Model
Soups (Wortsman et al., 2022) and is described in
Eq. (3) and Eq. (4). Specifically, we initialize the
learnable mixing coefficient of the shared expert as
0.75 and that of the other 7 normal experts as 1

28
for fair comparison. As is shown in Table 5, trained
mixing coefficients outperform the initialized mix-
ing coefficients for merging. Furthermore, remov-
ing the shared rate setting will largely degrade the
performance of XFTDS on both HumanEval and
HumanEval+, demonstrating its importance.

By investigating the learned mixing coefficients
without the shared rate setting, we find that most
mixing coefficients of the shared experts increase
to around 0.753 rather than the original value of
0.75. We argue that such an increase is not helpful
because, although the shared expert has learned
general knowledge across the whole instruction
dataset and needs a relatively large mixing coeffi-
cient, we still need to keep the scale of the mixing
coefficient of other normal experts at a certain level
also to keep some specific knowledge learned by
other normal experts.

5.3 Effect of Base Code LLM
In this section, we demonstrate that the effective-
ness of XFT is not dependent on the choice of

Model HumanEval HumanEval+

SFTSTABLE 62.2 56.1

MoESTABLE 64.0 59.1
XFTSTABLE 68.3 62.2

Table 6: Ablation over the effect of the base model
by replacing DeepSeek-Coder-Base 1.3B with STABLE-
CODE 3B. XFT can consistently improve the instruction
tuning performance of different base code LLMs.

base code LLMs. To show this, we conduct an
ablation experiment by applying XFT to STABLE-
CODE 3B (Pinnaparaju et al.), whose architecture
is different from DeepSeek-Coder-Base 1.3B (Guo
et al., 2024), and see whether it can still improve its
performance on HumanEval and HumanEval+. Hy-
perparameter settings are detailed in Appendix A.5.
As is shown in Table 6, XFTSTABLE significantly
improves SFTSTABLE by 10% on HumanEval and
11% on HumanEval+ respectively. Furthermore,
XFTSTABLE consistently boosts the performance
of MoESTABLE while only using 1/4× parameters
and 1/2× computations. These results show that
the effectiveness of XFT does not depend on any
specific choice of base code LLMs, demonstrating
the generalizability of XFT.

6 Conclusion

This paper introduces XFT to unlock the power
of code instruction tuning by simply merging up-
cycled MoE. Similar to SFT, XFT starts with a
dense LLM and produces a fine-tuned dense LLM
with the exact size and model structure. Yet, XFT
improves SFT by upcycling the pre-trained dense
LLM to an MoE model for fine-tuning, after which
we compile the MoE model back to an efficient
dense LLM with a learnable merging mechanism.
As such, we unleash the performance limit of in-
struction tuning without any additional inference
overhead. Using the same dataset, XFT improves
SFT on a variety of benchmarks, including Hu-
manEval(+), MBPP(+), MultiPL-E, and DS-1000,
from 2% to 13%. By applying XFT to DeepSeek-
Coder-Base 1.3B, we create the next state-of-the-
art small (<3B) LLM for code. The ultimate dense
LLM produced by XFT preserves or even outper-
forms the full upcycled MoE which uses 8× pa-
rameters as much as our final dense LLM. XFT is
fully orthogonal to the existing instruction tuners
such as SELF-INSTRUCT, Evol-Instruct, and OSS-
INSTRUCT, opening a new dimension to maximal
code instruction tuning.

8

7 Limitations

While XFT has proven to be effective through ex-
tensive experiments in the paper, we apply our tech-
nique to LLMs with no more than 3B parameters
due to resource constraints. This limitation hin-
ders our ability to showcase the impact of XFT on
larger models. In addition, to balance the general
knowledge in the shared expert and the specific
knowledge in other normal experts, we introduce a
hyperparameter λ in the merging process of XFT,
which might slightly increase the efforts for hyper-
parameter search. It would be interesting to explore
other hyperparameter-free techniques to tackle this
challenge in the future. Furthermore, while XFT
has been empirically proven powerful, it would be
interesting to provide a theoretical explanation for
its strong performance.

References
Jacob Austin, Augustus Odena, Maxwell Nye, Maarten

Bosma, Henryk Michalewski, David Dohan, Ellen
Jiang, Carrie Cai, Michael Terry, Quoc Le, and
Charles Sutton. 2021. Program synthesis with large
language models.

Loubna Ben Allal, Niklas Muennighoff, Lo-
gesh Kumar Umapathi, Ben Lipkin, and
Leandro von Werra. 2022. A framework
for the evaluation of code generation mod-
els. https://github.com/bigcode-project/
bigcode-evaluation-harness.

Federico Cassano, John Gouwar, Daniel Nguyen, Syd-
ney Nguyen, Luna Phipps-Costin, Donald Pinckney,
Ming-Ho Yee, Yangtian Zi, Carolyn Jane Anderson,
Molly Q Feldman, Arjun Guha, Michael Greenberg,
and Abhinav Jangda. 2022. Multipl-e: A scalable
and extensible approach to benchmarking neural code
generation.

Sahil Chaudhary. 2023. Code alpaca: An instruction-
following llama model for code generation. https:
//github.com/sahil280114/codealpaca.

Guanzheng Chen, Fangyu Liu, Zaiqiao Meng, and
Shangsong Liang. 2022. Revisiting parameter-
efficient tuning: Are we really there yet?

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, Alex Ray, Raul Puri, Gretchen
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas-
try, Pamela Mishkin, Brooke Chan, Scott Gray,
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz
Kaiser, Mohammad Bavarian, Clemens Winter,
Philippe Tillet, Felipe Petroski Such, Dave Cum-
mings, Matthias Plappert, Fotios Chantzis, Eliza-
beth Barnes, Ariel Herbert-Voss, William Hebgen

Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie
Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,
William Saunders, Christopher Hesse, Andrew N.
Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan
Morikawa, Alec Radford, Matthew Knight, Miles
Brundage, Mira Murati, Katie Mayer, Peter Welinder,
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya
Sutskever, and Wojciech Zaremba. 2021. Evaluating
large language models trained on code.

Damai Dai, Chengqi Deng, Chenggang Zhao, R. X.
Xu, Huazuo Gao, Deli Chen, Jiashi Li, Wangding
Zeng, Xingkai Yu, Y. Wu, Zhenda Xie, Y. K. Li,
Panpan Huang, Fuli Luo, Chong Ruan, Zhifang Sui,
and Wenfeng Liang. 2024. Deepseekmoe: Towards
ultimate expert specialization in mixture-of-experts
language models.

Shihan Dou, Enyu Zhou, Yan Liu, Songyang Gao, Jun
Zhao, Wei Shen, Yuhao Zhou, Zhiheng Xi, Xiao
Wang, Xiaoran Fan, Shiliang Pu, Jiang Zhu, Rui
Zheng, Tao Gui, Qi Zhang, and Xuanjing Huang.
2023. Loramoe: Revolutionizing mixture of experts
for maintaining world knowledge in language model
alignment.

Nan Du, Yanping Huang, Andrew M. Dai, Simon Tong,
Dmitry Lepikhin, Yuanzhong Xu, Maxim Krikun,
Yanqi Zhou, Adams Wei Yu, Orhan Firat, Barret
Zoph, Liam Fedus, Maarten Bosma, Zongwei Zhou,
Tao Wang, Yu Emma Wang, Kellie Webster, Marie
Pellat, Kevin Robinson, Kathleen Meier-Hellstern,
Toju Duke, Lucas Dixon, Kun Zhang, Quoc V Le,
Yonghui Wu, Zhifeng Chen, and Claire Cui. 2022.
Glam: Efficient scaling of language models with
mixture-of-experts.

William Fedus, Barret Zoph, and Noam Shazeer. 2022.
Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity.

Yunhao Gou, Zhili Liu, Kai Chen, Lanqing Hong, Hang
Xu, Aoxue Li, Dit-Yan Yeung, James T. Kwok, and
Yu Zhang. 2024. Mixture of cluster-conditional lora
experts for vision-language instruction tuning.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai
Dong, Wentao Zhang, Guanting Chen, Xiao Bi,
Y. Wu, Y. K. Li, Fuli Luo, Yingfei Xiong, and Wen-
feng Liang. 2024. Deepseek-coder: When the large
language model meets programming – the rise of
code intelligence.

Yongqi Huang, Peng Ye, Xiaoshui Huang, Sheng Li,
Tao Chen, Tong He, and Wanli Ouyang. 2023. Ex-
perts weights averaging: A new general training
scheme for vision transformers.

Albert Q. Jiang, Alexandre Sablayrolles, Antoine
Roux, Arthur Mensch, Blanche Savary, Chris
Bamford, Devendra Singh Chaplot, Diego de las
Casas, Emma Bou Hanna, Florian Bressand, Gi-
anna Lengyel, Guillaume Bour, Guillaume Lam-
ple, Lélio Renard Lavaud, Lucile Saulnier, Marie-
Anne Lachaux, Pierre Stock, Sandeep Subramanian,

9

http://arxiv.org/abs/2108.07732
http://arxiv.org/abs/2108.07732
https://github.com/bigcode-project/bigcode-evaluation-harness
https://github.com/bigcode-project/bigcode-evaluation-harness
http://arxiv.org/abs/2208.08227
http://arxiv.org/abs/2208.08227
http://arxiv.org/abs/2208.08227
https://github.com/sahil280114/codealpaca
https://github.com/sahil280114/codealpaca
http://arxiv.org/abs/2202.07962
http://arxiv.org/abs/2202.07962
http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2401.06066
http://arxiv.org/abs/2401.06066
http://arxiv.org/abs/2401.06066
http://arxiv.org/abs/2312.09979
http://arxiv.org/abs/2312.09979
http://arxiv.org/abs/2312.09979
http://arxiv.org/abs/2112.06905
http://arxiv.org/abs/2112.06905
http://arxiv.org/abs/2101.03961
http://arxiv.org/abs/2101.03961
http://arxiv.org/abs/2312.12379
http://arxiv.org/abs/2312.12379
http://arxiv.org/abs/2401.14196
http://arxiv.org/abs/2401.14196
http://arxiv.org/abs/2401.14196
http://arxiv.org/abs/2308.06093
http://arxiv.org/abs/2308.06093
http://arxiv.org/abs/2308.06093

Sophia Yang, Szymon Antoniak, Teven Le Scao,
Théophile Gervet, Thibaut Lavril, Thomas Wang,
Timothée Lacroix, and William El Sayed. 2024. Mix-
tral of experts.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B.
Brown, Benjamin Chess, Rewon Child, Scott Gray,
Alec Radford, Jeffrey Wu, and Dario Amodei. 2020.
Scaling laws for neural language models.

Aran Komatsuzaki, Joan Puigcerver, James Lee-Thorp,
Carlos Riquelme Ruiz, Basil Mustafa, Joshua Ainslie,
Yi Tay, Mostafa Dehghani, and Neil Houlsby. 2023.
Sparse upcycling: Training mixture-of-experts from
dense checkpoints.

Yuhang Lai, Chengxi Li, Yiming Wang, Tianyi Zhang,
Ruiqi Zhong, Luke Zettlemoyer, Scott Wen tau Yih,
Daniel Fried, Sida Wang, and Tao Yu. 2022. Ds-1000:
A natural and reliable benchmark for data science
code generation.

Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu,
Dehao Chen, Orhan Firat, Yanping Huang, Maxim
Krikun, Noam Shazeer, and Zhifeng Chen. 2020.
Gshard: Scaling giant models with conditional com-
putation and automatic sharding.

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Ling-
ming Zhang. 2023. Is your code generated by chat-
GPT really correct? rigorous evaluation of large lan-
guage models for code generation. In Thirty-seventh
Conference on Neural Information Processing Sys-
tems.

LLaMA-MoE Team. 2023. Llama-moe: Building
mixture-of-experts from llama with continual pre-
training.

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xi-
ubo Geng, Wenxiang Hu, Chongyang Tao, Jing Ma,
Qingwei Lin, and Daxin Jiang. 2023. Wizardcoder:
Empowering code large language models with evol-
instruct.

Zohar Manna and Richard J Waldinger. 1971. Toward
automatic program synthesis. Communications of
the ACM, 14(3):151–165.

Nikhil Pinnaparaju, Reshinth Adithyan, Duy Phung,
Jonathan Tow, James Baicoianu, , and Nathan Cooper.
Stable code 3b.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz,
Andy Davis, Quoc Le, Geoffrey Hinton, and Jeff
Dean. 2017. Outrageously large neural networks:
The sparsely-gated mixture-of-experts layer.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa
Liu, Noah A. Smith, Daniel Khashabi, and Hannaneh
Hajishirzi. 2023. Self-instruct: Aligning language
models with self-generated instructions.

Jason Wei, Maarten Bosma, Vincent Y. Zhao, Kelvin
Guu, Adams Wei Yu, Brian Lester, Nan Du, An-
drew M. Dai, and Quoc V. Le. 2022. Finetuned
language models are zero-shot learners.

Yuxiang Wei, Zhe Wang, Jiawei Liu, Yifeng Ding, and
Lingming Zhang. 2023. Magicoder: Source code is
all you need. arXiv preprint arXiv:2312.02120.

Mitchell Wortsman, Gabriel Ilharco, Samir Yitzhak
Gadre, Rebecca Roelofs, Raphael Gontijo-Lopes,
Ari S. Morcos, Hongseok Namkoong, Ali Farhadi,
Yair Carmon, Simon Kornblith, and Ludwig Schmidt.
2022. Model soups: averaging weights of multiple
fine-tuned models improves accuracy without increas-
ing inference time.

Haoyuan Wu, Haisheng Zheng, and Bei Yu. 2024.
Parameter-efficient sparsity crafting from dense to
mixture-of-experts for instruction tuning on general
tasks.

Lemeng Wu, Mengchen Liu, Yinpeng Chen, Dongdong
Chen, Xiyang Dai, and Lu Yuan. 2022. Residual
mixture of experts.

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng,
Pu Zhao, Jiazhan Feng, Chongyang Tao, and Daxin
Jiang. 2023. Wizardlm: Empowering large language
models to follow complex instructions.

Fuzhao Xue, Xiaoxin He, Xiaozhe Ren, Yuxuan Lou,
and Yang You. 2022. One student knows all experts
know: From sparse to dense.

Fuzhao Xue, Zian Zheng, Yao Fu, Jinjie Ni, Zang-
wei Zheng, Wangchunshu Zhou, and Yang You.
2024. Openmoe: An early effort on open
mixture-of-experts language models. arXiv preprint
arXiv:2402.01739.

Shengyu Zhang, Linfeng Dong, Xiaoya Li, Sen Zhang,
Xiaofei Sun, Shuhe Wang, Jiwei Li, Runyi Hu, Tian-
wei Zhang, Fei Wu, and Guoyin Wang. 2023. Instruc-
tion tuning for large language models: A survey.

A Appendix for "XFT: Unlocking the
Power of Code Instruction Tuning by
Simply Merging Upcycled
Mixture-of-Experts"

A.1 Hyperparameter Settings
We use a batch size of 64 and a learning rare of
5e-5 with a linear scheduler to fine-tune MoEDS
for 4 epochs with 500 warmup steps, following
the implementation of previous work (Wei et al.,
2023). We further use a batch size of 64, a shared
expert rate λ of 0.75, and a learning rare of 1e-5
with a linear schedule to fine-tune the learnable
mixing coefficients for each of the experts in the
instruction-tuned MoEDS on the instruction dataset
for 1 epoch with 125 warmup steps. Detailedly, we
use Softmax to keep the sum of the mixing coef-
ficients of the other 7 normal experts as 0.25. For
SFTDS and EWADS, we use the same hyperparam-
eter setting as XFT, where the batch size is 64 and

10

http://arxiv.org/abs/2401.04088
http://arxiv.org/abs/2401.04088
http://arxiv.org/abs/2001.08361
http://arxiv.org/abs/2212.05055
http://arxiv.org/abs/2212.05055
http://arxiv.org/abs/2211.11501
http://arxiv.org/abs/2211.11501
http://arxiv.org/abs/2211.11501
http://arxiv.org/abs/2006.16668
http://arxiv.org/abs/2006.16668
https://openreview.net/forum?id=1qvx610Cu7
https://openreview.net/forum?id=1qvx610Cu7
https://openreview.net/forum?id=1qvx610Cu7
https://github.com/pjlab-sys4nlp/llama-moe
https://github.com/pjlab-sys4nlp/llama-moe
https://github.com/pjlab-sys4nlp/llama-moe
http://arxiv.org/abs/2306.08568
http://arxiv.org/abs/2306.08568
http://arxiv.org/abs/2306.08568
https://huggingface.co/stabilityai/stable-code-3b
http://arxiv.org/abs/1701.06538
http://arxiv.org/abs/1701.06538
http://arxiv.org/abs/2212.10560
http://arxiv.org/abs/2212.10560
http://arxiv.org/abs/2109.01652
http://arxiv.org/abs/2109.01652
http://arxiv.org/abs/2203.05482
http://arxiv.org/abs/2203.05482
http://arxiv.org/abs/2203.05482
http://arxiv.org/abs/2401.02731
http://arxiv.org/abs/2401.02731
http://arxiv.org/abs/2401.02731
http://arxiv.org/abs/2204.09636
http://arxiv.org/abs/2204.09636
http://arxiv.org/abs/2304.12244
http://arxiv.org/abs/2304.12244
http://arxiv.org/abs/2201.10890
http://arxiv.org/abs/2201.10890
http://arxiv.org/abs/2308.10792
http://arxiv.org/abs/2308.10792

the learning rate is 5e-5 with a linear scheduler. Be-
cause XFT is trained for 4 epochs during upcycling
and 1 epoch during merging, for a fair comparison,
we train SFTDS and EWADS for 5 (= 4 + 1) epochs
with 625 warmup steps.

A.2 Implementation details of EWA

Because EWA (Huang et al., 2023) does not release
their implementation, we implemented EWA by
ourselves, including constant schedule and linear
schedule. We use a share rate β of 0.3, following
the original setting of EWA. While EWA with the
constant schedule achieves reasonable performance
in our evaluation, the training loss of EWA with the
linear schedule becomes very unstable, as is shown
in Figure 3, and thus cannot achieve reasonable
performance. As a result, we report the results of
EWA with the constant schedule in Section 4.

0 2000 4000 6000 8000
Training steps

0

2

4

6

8

10

12

14

16

Tr
ai

ni
ng

 lo
ss

Constant schedule
Linear schedule

Figure 3: Training loss curve of EWA with constant
schedule and linear schedule.

A.3 Details of HumanEval and MBPP

In these benchmarks, each task consists of a task
description in English, which is sent to LLMs as
the prompt, and LLMs are expected to generate the
corresponding code to satisfy the requirements in
the description. While these benchmarks provide
a handful of test cases to validate the correctness
of the generated code, these tests are often insuf-
ficient for more rigorous evaluation. As such, Hu-
manEval+ and MBPP+ proposed by EvalPlus (Liu
et al., 2023) are usually used to evaluate the correct-
ness of the generated code, which provides 80×/35×
more tests compared with the original benchmarks.

A.4 Analysis on Expert Specialization

Inspired by recent works (Jiang et al., 2024; Xue
et al., 2024), we analyze whether each expert in

MoEDS has different specializations in different
programming languages by visualizing the routing
decision of the tokens from different programming
languages in the MultiPL-E benchmark (including
Python). For the MultiPL-E benchmark, we collect
the routing decision when conducting experiments
in Section 4.3. For Python, we collect the routing
decision by reruning HumanEval experiment fol-
lowing the same setting as Section 4.3. Following
Mixtral (Jiang et al., 2024), we get the visualiza-
tion results from layers 0, 11, and 23 in MoEDS,
where layer 0 and layer 23 are the first and the last
layers of MoEDS. As is shown in Figure 4, we do
not observe obvious patterns in the assignment of
experts based on the programming language, which
is in line with the observation reported by recent
works (Jiang et al., 2024; Xue et al., 2024).

A.5 Training Settings for STABLE-CODE 3B
We use evol-codealpaca-v1 as the training
dataset. Since STABLE-CODE 3B is the base model
now, we upcycle a new MoE model from the base
model, namely MoESTABLE. Due to limited com-
putational resources, we construct MoESTABLE
with 4 experts in one expert layer, where the top
2 experts are activated for each token, includ-
ing one shared expert. Consequently, the size of
MoESTABLE can be described as 4×3B. We use a
batch size of 64 and a learning rate of 5e-5 with
a linear scheduler to fine-tune MoESTABLE for 4
epochs with 500 warmup steps. Similar to XFTDS,
we obtain XFTSTABLE by learning mixing coef-
ficients to merge MoE layers inside MoESTABLE
as normal FFN layers, which is fine-tuned with a
batch size of 64, a shared expert rate λ of 0.85, and
a learning rate of 1e-5 with a linear schedule for
1 epoch with 125 warmup steps. We also build a
baseline model SFTSTABLE, which is fine-tuned
for 5 epochs under the same settings for a fair com-
parison.

11

1 2 3 4 5 6 7
Expert ID

0.00

0.05

0.10

0.15

0.20
layer: 23

Python C++ PHP Java JS Swift Rust

0.00

0.05

0.10

0.15

0.20
layer: 0

0.00

0.05

0.10

0.15

0.20

Se
le

ct
io

n
pr

op
or

tio
n

layer: 11

Figure 4: Proportion of tokens assigned to each expert on different programming languages from MultiPL-E
(including Python) for layers 0, 11, and 23. The shared expert 0 is excluded from the chart because all the tokens are
always assigned to it. The gray vertical line marks 1

7 , which is the proportion expected with the uniform sampling.

12

	Introduction
	Related Work
	Mixture-of-Experts
	Instruction Tuning
	Weight Averaging

	XFT
	Upcycling
	Shared Expert for Upcycling

	Merging

	Main Evaluation
	Experimental Setup
	Python Text-to-Code Generation
	Multilingual Code Generation
	Code Generation for Data Science

	Ablation Study
	Effect of Shared Expert with Routing Weight Normalization
	Effect of Merging Strategy
	Effect of Base Code LLM

	Conclusion
	Limitations
	Appendix for "XFT: Unlocking the Power of Code Instruction Tuning by Simply Merging Upcycled Mixture-of-Experts"
	Hyperparameter Settings
	Implementation details of EWA
	Details of HumanEval and MBPP
	Analysis on Expert Specialization
	Training Settings for stable-code 3B

